Potential role of leucine metabolism in the leucine-signaling pathway involving mTOR.
نویسندگان
چکیده
Leucine has been shown to stimulate adipose tissue protein synthesis in vivo as well as leptin secretion, protein synthesis, hyper-plastic growth, and tissue morphogenesis in in vitro experiments using freshly isolated adipocytes. Recently, others have proposed that leucine oxidation in the mitochondria may be required to activate the mammalian target of rapamycin (mTOR), the cytosolic Ser/Thr protein kinase that appears to mediate some of these effects. The first irreversible and rate-limiting step in leucine oxidation is catalyzed by the branched-chain alpha-keto acid dehydrogenase (BCKD) complex. The activity of this complex is regulated acutely by phosphorylation of the E1alpha-subunit at Ser293 (S293), which inactivates the complex. Because the alpha-keto acid of leucine regulates the activity of BCKD kinase, it has been suggested as a potential target for leucine regulation of mTOR. To study the regulation of BCKD phosphorylation and its potential link to mTOR activation, a phosphopeptide-specific antibody recognizing this site was developed and characterized. Phospho-S293 (pS293) immunoreactivity in liver corresponded closely to diet-induced changes in BCKD activity state. Immunoreactivity was also increased in TREMK-4 cells after the induction of BCKD kinase by a drug-inducible promoter. BCKD S293 phosphorylations in adipose tissue and gastrocnemius (which is mostly inactive in vivo) were similar. This suggests that BCKD complex in epididymal adipose tissue from food-deprived rats is mostly inactive (unable to oxidize leucine), as is the case in muscle. To begin to test the leucine oxidation hypothesis of mTOR activation, the dose-dependent effects of orally administered leucine on acute activation of S6K1 (an mTOR substrate) and BCKD were compared using the pS293 antibodies. Increasing doses of leucine directly correlated with increases in plasma leucine concentration. Phosphorylation of S6K1 (Thr389, the phosphorylation site leading to activation) in adipose tissue was maximal at a dose of leucine that increased plasma leucine approximately threefold. Changes in BCKD phosphorylation state required higher plasma leucine concentrations. The results seem more consistent with a role for BCKD and BCKD kinase in the activation of leucine metabolism/oxidation than in the activation of the leucine signal to mTOR.
منابع مشابه
Leucine-stimulated mTOR signaling is partly attenuated in skeletal muscle of chronically uremic rats.
The branched-chain amino acid leucine stimulates muscle protein synthesis in part by directly activating the mTOR signaling pathway. Furthermore, leucine, if given in conjunction with resistance exercise, enhances the exercise-induced mTOR signaling and protein synthesis. Here we tested whether leucine can activate the mTOR anabolic signaling pathway in uremia and whether it can enhance work ov...
متن کاملLeucine restriction inhibits chondrocyte proliferation and differentiation through mechanisms both dependent and independent of mTOR signaling.
Linear growth in children is sensitive to nutritional status. Amino acids, in particular leucine, have been shown to regulate cell growth, proliferation, and differentiation through the mammalian target of rapamycin (mTOR), a nutrient-sensing protein kinase. Having recently demonstrated a role for mTOR in chondrogenesis, we hypothesized that leucine restriction, acting through mTOR, would inhib...
متن کاملTissue-specific effects of chronic dietary leucine and norleucine supplementation on protein synthesis in rats.
Acute administration of leucine and norleucine activates the mammalian target of rapamycin (mTOR) cell-signaling pathway and increases rates of protein synthesis in a number of tissues in fasted rats. Although persistent stimulation of mTOR signaling is thought to increase protein synthetic capacity, little information is available concerning the effects of chronic administration of these agoni...
متن کاملThe Regulatory Role of MeAIB in Protein Metabolism and the mTOR Signaling Pathway in Porcine Enterocytes
Amino acid transporters play an important role in cell growth and metabolism. MeAIB, a transporter-selective substrate, often represses the adaptive regulation of sodium-coupled neutral amino acid transporter 2 (SNAT2), which may act as a receptor and regulate cellular amino acid contents, therefore modulating cellular downstream signaling. The aim of this study was to investigate the effects o...
متن کاملActivation of the cardiac mTOR/p70(S6K) pathway by leucine requires PDK1 and correlates with PRAS40 phosphorylation.
Like insulin, leucine stimulates the mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase (p70(S6K)) axis in various organs. Insulin proceeds via the canonical association of phosphatidylinositol 3-kinase (PI3K), phosphoinositide-dependent protein kinase-1 (PDK1), and protein kinase B (PKB/Akt). The signaling involved in leucine effect, although known to implicate a PI3K mechanism indep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 285 4 شماره
صفحات -
تاریخ انتشار 2003